Abstract

In digital enzyme-linked immunosorbent assay, which is used for biomarker detection and diagnosis, the concentration of target biomarkers is estimated by counting the number of fluorescence chambers in the microchamber array. We propose a compact system for counting fluorescent chambers. Our system consists of three components: a micro-reaction chamber array, an absorption filter for attenuating excitation light, and a photodetector. The absorption filter has a micro-light-pipe array (m-LPA) structure. A stacked photodiode CMOS image sensor (CIS), which can discriminate color, is applied as a photodetector. This paper describes the fabrication process enabling thin m-LPA chips. The unique low-noise characteristics of the stacked photodiode CIS that attains high sensitivity by adopting the 4T-APS configuration are explained. Furthermore, a detection method using the photobleaching phenomenon is proposed for high-sensitivity fluorescence detection. This method suggests that fluorescence by a single molecular enzyme can be detected within 30 min of the start of the fluorescence reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.