Abstract
Given an action of a complex reductive Lie group G on a normal variety X, we show that every analytically Zariski-open subset of X admitting an analytic Hilbert quotient with projective quotient space is given as the set of semistable points with respect to some G-linearised Weil divisor on X. Applying this result to Hamiltonian actions on algebraic varieties, we prove that semistability with respect to a momentum map is equivalent to GIT-semistability in the sense of Mumford and Hausen. It follows that the number of compact momentum map quotients of a given algebraic Hamiltonian G-variety is finite. As further corollary we derive a projectivity criterion for varieties with compact Kähler quotient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.