Abstract

In this paper, a surface-enhanced Raman scattering (SERS) sensor with a giant field enhancement factor based on the coupling of surface plasmon polaritons (SPPs) is designed and studied theoretically. The proposed sensor adopts a metal-dielectric layered hybrid slot waveguide structure, combining thin metal (gold) layers and silicon nitride strip waveguides. Unlike other similar sensors, the silicon nitride waveguide structure does not serve as an excitation signal channel, conventionally loaded with the guided modes, but as an auxiliary layer, making it easier to concentrate the light field in the slot. Therefore, the sensor has a higher enhancement factor compared to the pure metal or dielectric slot structure. The results exhibit that we can obtain a maximum enhancement factor exceeding 10^6 under the compact configuration of 510 × 300 × 225nm^3 at the wavelength of 785 nm. By analyzing the dependence of the sensor performance on the structural parameters, we show that the structure of such sensor can directly be applied to SERS spectroscopic analysis as well as integrated with micro-and nano-photonic platform to perform on-chip detection system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call