Abstract

Fifth generation (5G) communication system enables the pathway for a higher data transfer rate. The frequency bands used for 5G communication system are distributed from lower frequency range (600 MHz) to a higher frequency range (60 GHz). So it is necessary that a single switch should be able to cover the complete range of 5G frequency bands. The ohmic radio frequency-micro electromechanical system (RF-MEMS) switch has offered high isolation at lower frequencies (> 40 dB up to 2.5 GHz). However, 5G requires a higher frequency range which is covered by capacitive switch. The capacitive switch has limitations of limited bandwidth and large size. In this paper, a hybrid technique is used for the designing of a compact, high isolation and the enhanced bandwidth SPDT RF MEMS switch for 5G applications. The size of the proposed switch is half from the conventional capacitive RF MEMS switch and offer greater than 40 dB isolation over a wide frequency range (> 40 dB over 22.10 GHz bandwidth) with less than 0.30 dB insertion loss over the entire band.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.