Abstract

ABSTRACT In order to meet heat rejection requirements for future NASA exploration, scientific, and discovery missions, a study is being conducted for the feasibility of integral variable conductance planar heat pipe (VCPHP) technology. This represents a novel, low technology readiness level (TRL) heat rejection technology that, when developed, could operate efficiently and reliably across a wide range of thermal environments. The concept consists of a planar heat pipe whose evaporator acquires the excess thermal energy from the thermal control system and rejects it at its condenser whose outer surface acts as a radiating surface. The heat pipe is made from thermally conductive polymers in order to minimize its mass. It has a non-condensable gas that changes the active radiator surface depending on the heat load. A mathematical model of steady-state variable conductance heat pipe is developed. Two planar heat pipes are designed, fabricated, and tested to validate the theoretical model. The feasibility of the proposed VCPHP working in a space environment is discussed, based on the model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call