Abstract

A model for the analysis of compact heat exchangers working as either evaporators or condensers is presented. This paper will focus exclusively on condensation modeling. The model is based on cell discretization of the heat exchanger in such a way that cells are analyzed following the path imposed by the refrigerant flowing through the tubes. It has been implemented in a robust code developed for assisting with the design of compact heat exchangers and refrigeration systems. These heat exchangers consist of serpentine fins that are brazed to multi-port tubes with internal microchannels. This paper also investigates a number of correlations used for the calculation of the refrigerant side heat transfer coefficient. They are evaluated comparing the predicted data with the experimental data. The working fluids used in the experiments are R134a and R410A, and the secondary fluid is air. The experimental facility is briefly described and some conclusions are finally drawn.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.