Abstract

Heterodyne displacement interferometry is a widely accepted methodology capable of measuring displacements with sub-nanometer resolution in many applications. We present a compact heterodyne system capable of simultaneously measuring Z-displacement along with changes in pitch and yaw using a single measurement beam incident on a plane mirror target. The interferometer's measurement detector utilizes differential wavefront sensing to decouple and measure these three degrees of freedom. Reliable rotational measurements typically require calibration; however, two analytical models are discussed which predict the readout of rotational scaling factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.