Abstract
A low-noise amplifier (LNA) is the input part of a radio frequency (RF) transceiver, which is vulnerable to electrostatic discharge (ESD). When ESD events occur, they may change the original characteristics of the LNA, such as gain decrease and noise figure (NF) increase. Dual diodes (DD) with MOS-based power clamp is a traditional on-chip ESD protection circuit, but it has disadvantages of large parasitic capacitance, large turn-on resistance, large layout area, and large leakage current. Therefore, a new compact ESD protection circuit is proposed, which uses stacked diodes with embedded silicon-controlled rectifier (SDeSCR) and SCR-based power clamp to protect the LNA. The proposed design has advantages of low parasitic capacitance, low clamping voltage, high ESD robustness, and compact layout area. In this work, the ESD protection circuit and the ${K}$ -band LNA are fabricated in CMOS technology, and their RF characteristics and ESD robustness are verified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.