Abstract

Summary form only given. In this novel neutron source, a deuterium beam (energy of about 100 keV) is to be injected through a Plasma Window into a tube filled with tritium gas or tritium plasma to generate D-T fusion reactions whose products are 14.06 MeV neutrons and 3.52 MeV alpha particles. At the opposite end of the tube, the energy of deuterium ions that did not interact is recovered. Energy recovery is close to 100%. Be walls of proper thickness will absorb 14 MeV neutrons and release 2 – 3 low energy neutrons. Each ion source and tube forms a module. Larger systems can be formed from multiple units. Beam propagation can be further enhanced with vortex-stabilized discharges, electron beams in opposite direction (with energy recovery) or magnetic fields where possible. In one particular magnetized case of hot electron plasma, fusion power can, in principle, exceed ion beam power loss. Unlike current methods, where accelerator based neutron sources require large amounts of power for operation, this neutron source will generated enough power to compensate for the power required to generate the ion beam. Concept description and basic calculation will be presented. Among possible applications for this neutron source concept are sub-critical nuclear breeder reactors and accelerator transmutation of radioactive waste.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.