Abstract
Efficient methods for storing and querying language models are critical for scaling to large corpora and high Markov orders. In this paper we propose methods for modeling extremely large corpora without imposing a Markov condition. At its core, our approach uses a succinct index ‐ a compressed suffix tree ‐ which provides near optimal compression while supporting efficient search. We present algorithms for on-the-fly computation of probabilities under a Kneser-Ney language model. Our technique is exact and although slower than leading LM toolkits, it shows promising scaling properties, which we demonstrate through1-order modeling over the full Wikipedia collection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.