Abstract

Direct methanol fuel cells (DMFC) are typically supplied under pressure or capillary action with a solution of methanol in water optimized for the best specific power and power density at an operating temperature of about 60 °C. Methanol and water consumption at the anode together with water and methanol losses through membrane due to crossover create an imbalance over time so the fuel concentration at the anode drifts from the optimal ratio. In the present study, we demonstrate a DMFC with a means for continuous adjustment of water and methanol content in the anode fuel mixture of an air-breathing DMFC to maintain the optimal concentration for maximum and continuous power. Two types of piezoelectric micropumps were programmed to deliver the two liquids at the designated rate to maintain optimal concentration at the anode during discharge. The micropumps operate over a wide range of temperature, can be easily reprogrammed and can operate in any orientation. A study of performance at different current densities showed that at 100 mA/cm2, the self-contained, free convection, air-breathing cell delivers 31.6 mW/cm2 of electrode surface with thermal equilibrium reached at 52 °C. The micropumps and controllers consume only 2.6% of this power during 43 h of continuous unattended operation. Methanol utilization is 1.83 Wh cm−3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.