Abstract

Numerical models for the evaluation of cryo-adsorbent based hydrogen storage systems for fuel cell vehicles were developed and validated against experimental data. These models simultaneously solve the conservation equations for heat, mass, and momentum together with the equations for the adsorbent thermodynamics. The models also use real gas thermodynamic properties for hydrogen. Model predictions were compared to data for charging and discharging both MOF-5™ and activated carbon systems. Applications of the model include detailed finite element analysis simulations as well as full vehicle-level system analyses. The present work provides an overview of the compacted adsorbent MOF-5™ storage prototype system, as well as a detailed computational analysis and its validation using 2-liter prototype test system. The results of these validated computational analyses are then projected to a full scale vehicle system, based on an 80 KW fuel cell with a 20 kW battery. This work is part of the Hydrogen Storage Engineering Center of Excellence (HSECoE), which brings materials development and hydrogen storage technology efforts address onboard hydrogen storage in light duty vehicle applications. The HSECoE spans the design space of the vehicle requirements, balance of plant requirements, storage system components, and materials engineering. Theoretical, computational, and experimental efforts are combined to evaluate, design, analyze, and scale potential hydrogen storage systems and their supporting components against the Department of Energy (DOE) 2020 and Ultimate Technical Targets for Hydrogen Storage Systems for Light Duty Vehicles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call