Abstract

Flexural fatigue tests of bovine bone specimens produced fracture surfaces that were transverse on the tension side and oblique on the compression side. Similar fracture patterns were produced by bending tests with a single applied loading. Microscopic examination of flexural fatigue specimens prior to complete established that fatigue fracture is caused by the progressive accumulation of diffuse structural damage. The microdamage observed on the tension side consisted primarily of separation (or debonding) at cement lines and interlamellar cement bands. Tensile cracks in interstitial bone were also observed. The major damage modes on the compression side were oblique cracking and longitudinal splitting. The fatigue fracture patterns observed for the bone specimens correspond to the types of fatigue fractures observed clinically. Compact bone fatigue fractures in areas of longitudinal tensile stresses are generally seen as transverse lesions, whereas fatigue fractures in areas of longitudinal compressive stresses are normally oblique fractures. The diffuse nature of the observed fatigue damage is consistent with the hypothesis that microdamage caused by mechanical loading may serve as a stimulus for in vivo bone remodeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call