Abstract
An electronically beam-steerable antenna (BSA) is envisioned. The presented BSA is a possible solution to overthrow the limitations inherent to phased antenna arrays. The design consists of a gap coupling inset feed rectangular patch (driven element) and 3 × 1 passive parasitic patches deployed on both sides of the driven patch. Prototype having 20 × 20 mm dimensions is printed on Rogers® RT/duroid®5870. Four switches are used to load the reactive impedance on parasitic patches, which in turn, change the phases of surface current on parasitic elements and the driven element. Based on the different ON and OFF configuration of switches in parasitic array elements, the main beam is steered along with different directions. The simulated results show that the design can operate between 26.8 and 30.3 GHz a wide impedance bandwidth |S11|< −10 dB (12.5%) with a peak gain of 8.9 dBi and wide 3-dB scanning angle that is, −37° to 156° in the azimuth plane. The exhibited performance of BSA with favourable characteristics, such as wideband, adequate gain, wide-angle beam switching, and low profile renders the BSA a good candidate for 5G millimetre wave handheld devices. Moreover, to corroborate the performance, the design is fabricated, and experimental measurements were performed. Congruence is observed between the experimentally measured and computationally simulated results. The simulated results of spherical coverage analysis of BSA with the integration of smartphone form factor are also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.