Abstract

Electroencephalography (EEG) eye state classification becomes an essential tool to identify the cognitive state of humans. It can be used in several fields such as motor imagery recognition, drug effect detection, emotion categorization, seizure detection, etc. With the latest advances in deep learning (DL) models, it is possible to design an accurate and prompt EEG EyeState classification problem. In this view, this study presents a novel compact bat algorithm with deep learning model for biomedical EEG EyeState classification (CBADL-BEESC) model. The major intention of the CBADL-BEESC technique aims to categorize the presence of EEG EyeState. The CBADL-BEESC model performs feature extraction using the ALexNet model which helps to produce useful feature vectors. In addition, extreme learning machine autoencoder (ELM-AE) model is applied to classify the EEG signals and the parameter tuning of the ELM-AE model is performed using CBA. The experimental result analysis of the CBADL-BEESC model is carried out on benchmark results and the comparative outcome reported the supremacy of the CBADL-BEESC model over the recent methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call