Abstract

Over recent years, the surge in mobile communication has deepened global connectivity. With escalating demands for faster data rates, the push for higher carrier frequencies intensifies. The 7–20 GHz range, located between the 5G sub-6 GHz and the mm-wave spectra, provides an excellent trade-off between network capacity and coverage, and constitutes a yet-to-be-explored range for 5G and 6G applications. This work proposes a technological platform able to deliver CMOS-compatible, on-chip multi-frequency, low-loss, wide-band, and compact filters for cellular radios operating in this range by leveraging the micro-to-nano scaling of acoustic electromechanical resonators. The results showcase the first-ever demonstrated low insertion loss bank of 7 nanoacoustic passband filters in the X-band. Most of the filters showcase fractional bandwidths above 3% and sub-dB loss per stage in an extremely compact form factor, enabling the manufacturing of filters and duplexers for the next generation of mobile handsets operating in the X-band and beyond.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call