Abstract

Frequency comb synthesized microwaves have been so far realized with tabletop systems, operated in well-controlled environments. Here, we demonstrate state-of-the-art ultrastable microwave synthesis with a compact rack-mountable apparatus. We present absolute phase noise characterization of a 12 GHz signal using an ultrastable laser at $\sim{194}\;{\rm THz}$∼194THz and an Er:fiber comb divider, obtaining $ - {83}\;{\rm dBc/Hz}$-83dBc/Hz at 1 Hz and $ \lt - {166}\;{\rm dBc/Hz}$<-166dBc/Hz for offsets greater than 5 kHz. Employing semiconductor coating mirrors for the same type of transportable optical frequency reference, we show that $ - {105}\;{\rm dBc/Hz}$-105dBc/Hz at 1 Hz is supported by demonstrating a residual noise limit of division and detection process of $ - {115}\;{\rm dBc/Hz}$-115dBc/Hz at 1 Hz. This level of fidelity paves the way for the deployment of ultrastable photonic microwave oscillators and for operating transportable optical clocks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call