Abstract

A new type of microstrip dual-mode dual-band bandpass filter (BPF) using a single quadruple-mode resonator (QMR) is proposed in this paper. The classical even-/odd-mode method is applied to analyze the characteristics of the proposed resonator, which shows that it has two pairs of symmetrical resonant modes. Owing to the inherent characteristic of a dual-mode resonator and source-load coupling, four transmission zeros can be produced and these four resonant modes can be divided in two groups, resulting in a dual-band BPF with two resonant modes in each passband. As examples, two dual-mode dual-band BPFs, Filter A with central frequencies (CFs) at 1.99/5.58 GHz and -3-dB fractional bandwidth (FBW) of 62.3%/19.7%, while Filter B with CFs at 1.64/5.26 GHz and -3-dB FBW of 32.9%/7.6%, are designed and fabricated. An aperture-backed compensation technique is employed in such two filters to enhance the coupling strength between the feeding lines and QMR. Furthermore, a meander coupled-line section is employed in the Filter A design, while a defected microstrip structure is introduced in Filter B design, so as to increase much more design freedoms for tuning filter performance. The fabricated two filters exhibit simple design procedures, low insertion losses, good return losses, sharp shirts, and compact sizes. Moreover, two BPFs do not need external input/output impedance transformation feeding lines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.