Abstract

Nanoscale CMOS technologies have been widely used to implement radio-frequency (RF) integrated circuits. However, the thinner gate oxide and silicided drain/source in nanoscale CMOS technologies seriously degrade the electrostatic discharge (ESD) robustness of RF circuits. Against ESD damage, on-chip ESD protection design must be included in RF circuits. As the RF circuits operating in the higher frequency band, the parasitic effect from ESD protection devices and/or circuits must be strictly limited. To provide the effective ESD protection for a 60-GHz low-noise amplifier (LNA) with less RF performance degradation, a new ESD protection design was studied in a 65-nm CMOS process. Such ESD-protected LNA with simulation/measurement results has been successfully verified in silicon chip to to achieve the 2-kV HBM ESD robustness with the lower power loss in a smaller layout area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.