Abstract

In this Letter, an ultracompact silicon-based waveguide crossing for dual polarizations is proposed and experimentally demonstrated using subwavelength-hole-assisted multimode interference couplers. Thanks to the flexible and easy dispersion engineering in the introduced subwavelength-hole-assisted multimode interference couplers, the reduced and equal beat lengths for dual polarizations are accessible via careful parametric optimization, consequently enabling a substantially reduced device size. Experimental results indicate that the proposed crossing (13.6 × 13.6 µm2 in size) features a low insertion loss of 1.03 dB (0.76 dB) and low crosstalk of -32.5 dB (-37.8 dB) at a central wavelength of 1550 nm for TE (TM) mode, with a broad bandwidth of ∼80 nm for crosstalk of <-18 dB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.