Abstract
Two cobalt oxyfluoride antiferromagnets CoMOF5(pyz)(H2O)2 (M = Nb 1, Ta 2; pyz = pyrazine) have been synthesized via conventional hydrothermal methods and characterized by thermogravimetric (TGA) analysis, FTIR spectroscopy, electron spin resonance (ESR), magnetic susceptibility, and magnetization measurements at both static low field and pulsed high field. The single-crystal X-ray diffraction indicates both compounds 1 and 2 are isostructural and crystallize in the monoclinic space group C2/m with a two-dimensional Co2+ triangular lattice in the ab plane, separated by the nonmagnetic MOF5 (M = Nb 1, Ta 2) octahedra along the c-axis with large intertriangular-lattice Co···Co distance. Because of low dimensionality together with frustrated triangular lattice, compounds 1 and 2 exhibit no long-range antiferromagnetic order until ∼3.7 K. Moreover, a spin flop transition is observed in the magnetization curves at 2 K for both compounds, which is further confirmed by ESR spectra. In addition, the ESR spectra suggest the presence of a zero-field spin gap in both compounds. The high field magnetization measured at 2 K saturates at ∼7 T with Ms = 1.55 μB for 1 and 1.71 μB for 2, respectively, after subtracting the Van Vleck paramagnetic contribution, which is usually observed for Co2+ ions with pseudospin spin of 1/2 at low temperature. Powder-averaged magnetic anisotropy of g = 3.10 for 1 (3.42 for 2) and magnetic superexchange interaction J/kB = -3.2 K for 1 (-3.6 K for 2) are obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.