Abstract

This paper introduces the notion of comodularity, to cocluster observations of bipartite networks into co-communities. The task of coclustering is to group together nodes of one type with nodes of another type, according to the interactions that are the most similar. The measure of comodularity is introduced to assess the strength of co-communities, as well as to arrange the representation of nodes and clusters for visualization, and to define an objective function for optimization. We demonstrate the usefulness of our proposed methodology on simulated data, and with examples from genomics and consumer-product reviews.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.