Abstract
In this work, we study a type of commuting SYK model in which all terms in the Hamiltonian are commutative to each other. Because of the commutativity, this model has a large number of conserved charges and is integrable. After the ensemble average of random couplings, we can solve this model exactly in any N. Though this integral model is not holographic, we do find that it has some holography-like features, especially the near-perfect size winding in high temperatures. Therefore, we would like to call it pseudo-holographic. We also find that the size winding of this model has a narrowly peaked size distribution, which is different from the ordinary SYK model. We apply the traversable wormhole teleportation protocol in the commuting SYK model and find that the teleportation has a few features similar to the semiclassical traversable wormhole but in different parameter regimes. We show that the underlying physics is not entirely determined by the size-winding mechanism but involves the peaked-size mechanism and thermalization. Lastly, we comment on the recent simulation of the dynamics of traversable wormholes on Google’s quantum processor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.