Abstract

Complete solutions of the commutation equations of ordinary differential operators are obtained, to which there corresponds a three-dimensional vector bundle of common eigenfunctions over an elliptic curve. The deformation of the commuting pair by the Kadomtsev–Petviashvili equation is studied. The finite-zone solutions of the Kadomtsev–Petviashvili equation of rank 3 and genus 1 are explicitly expressed in terms of functional parameters satisfying a Boussinesq-type system of two evolution equations. Bibliography: 40 titles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.