Abstract

This study was designed to estimate and compare the air pollution exposures experienced by commuters in six common transportation modes utilized by California residents, and to evaluate the impact of practical exposure mitigation strategies in reducing commute exposures. We measured concentrations of fine particle matter (PM2.5), black carbon (BC), and ultrafine particles (UFP) for 161 commutes between April 2014 and November 2015 in Sacramento, CA. We collected measurements for six modes including single occupancy vehicles, high occupancy vehicles (multiple occupants), buses, light rail, train, and bicycling. The largest average concentrations for most pollutants were measured during train commutes and the lowest average concentrations were observed during light-rail commutes. Mitigation options were explored for personal vehicles, bicycling, and train commute modes. We found that ventilation settings of personal vehicles can reduce in-vehicle PM2.5, BC, and UFP concentrations by up to 75%. Similarly, bicycle route choice can reduce exposures by 15–75% with the lowest concentrations observed during commutes on dedicated bicycle paths away from traffic sources. Train commuters experienced UFP concentrations an order of magnitude greater when the locomotive engine was pulling the rail cars versus pushing the rail cars. We found that UFP concentrations during bus, bicycling, and train commutes were 1.6–5.3 times greater than personal vehicle commutes, while light rail commutes had 30% lower UFP concentrations than personal vehicle commutes. The largest exposure per mile occurred during bicycle commutes with PM2.5, BC, and UFP exposures of 1.312 μg/mile, 0.097 μg/mile, and 3.0 × 109 particles/mile, respectively. Train commutes experienced the largest exposure per mile of all of the combustion-derived transportation commute modes. BC accounted for 5–20% of total PM mass across all commute modes with an average fraction of ∼7% of PM2.5.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.