Abstract

Let R be any associative ring with 1, let n ≥ 3, and let A,B be two-sided ideals of R. In the present paper, we show that the mixed commutator subgroup [E(n,R,A),E(n,R,B)] is generated as a group by the elements of the two following forms: 1) zij(ab, c) and zij (ba, c), 2) [tij(a), tji(b)], where 1 ≤ i ≠ j ≤ n, a ∈ A, b ∈ B, c ∈ R. Moreover, for the second type of generators, it suffices to fix one pair of indices (i, j). This result is both stronger and more general than the previous results by Roozbeh Hazrat and the authors. In particular, it implies that for all associative rings one has the equality [E(n,R,A),E(n,R,B)] = [E(n,A),E(n,B)], and many further corollaries can be derived for rings subject to commutativity conditions. Bibliography: 36 titles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.