Abstract
We investigate properties of commutative subrings and ideals in non-commutative algebraic crossed products for actions by arbitrary groups. A description of the commutant of the coecient subring in the crossed product ring is given. Conditions for commutativity and maximal commutativity of the commutant of the coecient subring are provided in terms of the action as well as in terms of the intersection of ideals in the crossed product ring with the coecient subring, specially taking into account both the case of coecient rings without non-trivial zero-divisors and the case of coecient rings with non-trivial zero-divisors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Generalized Lie Theory and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.