Abstract

Let M be a ?-ring and let D: M x M ->M be a symmetric bi-derivation with the trace d: M -> M denoted by d(x) = D(x, x) for all x?M. The objective of this paper is to prove some results concerning symmetric bi-derivation on prime and semiprime ?-rings. If M is a 2-torsion free prime ?-ring and D ? 0 be a symmetric bi-derivation with the trace d having the property d(x)?x - x?d(x) = 0 for all x?M and ???, then M is commutative. We also prove another result in ?-rings setting analogous to that of Posner for prime rings.GANIT J. Bangladesh Math. Soc.Vol. 34 (2014) 27-33

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.