Abstract

The spatial and temporal configuration of a degenerate four-wave mixing (DFWM) experiment have been analyzed. Numerical calculations and experiments show the clear dependence of the experimental signal value on the wave vector geometry. A commutative time symmetry method was applied to analyze data from DFWM measurements. The method permits the direct formulation of symmetry transformation rules that can be used to analyze the temporal shape of the diffracted pulse. This time symmetry approach was used to describe DFWM measurements on two third-order nonlinear materials, CS2 and polyacetylene thin films. The approach was used to analyze the slow decay temporal component region for DFWM experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.