Abstract

This paper first presents a novel boost front end simply with a diode, a MOSFET, and a DC-link capacitor. Without extra inductors or other power components, the boost font end could boost the capacitor voltage with the motor stator inductances, thus reducing the influence of the limited DC-link voltage on commutation torque ripple reduction to a large extent. A unified commutation torque ripple suppression strategy is further proposed with the front end adopted based on the analysis about the effects of four switching vectors on motor speed regulation and DC-link capacitor voltage regulation. The proposed strategy can boost the DC-link capacitor voltage via properly selection of switching vectors under the premise of guaranteeing normal speed regulation in noncommutation period, and reduce both the commutation torque ripple and commutation time by two consistent switching vectors with the boosted DC-link capacitor voltage in commutation period. Finally, the proposed method is theoretically analyzed with respect to the capacitance selection and the boot capacity of noninductive boost front end. The correctness of the analysis and the effectiveness of the presented method are validated by the experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.