Abstract

This paper presents a novel method to reduce commutation torque ripple in a position sensorless brushless DC (BLDC) motor drive. To compensate the commutation torque ripple completely, conventional methods should know commutation interval, so that they need current sensors. However, the proposed method measures commutation interval from the terminal voltage of a brushless DC motor, calculates a PWM duty ratio using the measured commutation interval to suppress the commutation torque ripple, and applies to the calculated PWM duty ratio only during the next commutation. Experimental results verify that the proposed method implemented in an air-conditioner compressor controller considerably reduces not only the pulsating currents but also vibrations of a position-sensorless BLDC motor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.