Abstract

T. Arakawa, in his unpublished note, constructed and studied a theta lifting from elliptic cusp forms to automorphic forms on the quaternion unitary group of signature $(1, q)$. The second named author proved that such a lifting provides bounded (or cuspidal) automorphic forms generating quaternionic discrete series. In this paper, restricting ourselves to the case of $q=1$, we reformulate Arakawa's theta lifting as a theta correspondence in the adelic setting and determine a commutation relation of Hecke operators satisfied by the lifting. As an application, we show that the theta lift of an elliptic Hecke eigenform is also a Hecke eigenform on the quaternion unitary group. We furthermore study the spinor $L$-function attached to the theta lift.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.