Abstract

BackgroundGenotyping is a powerful tool for investigating outbreaks of infectious diseases and it can provide useful information such as identifying the source and route of transmission, and circulating strains involved in the outbreak. Genotyping techniques based on variable number of tandem repeats (VNTR) are instrumental in detecting heterogeneity in Mycobacterium ulcerans (MU) and also for discriminating MU from other mycobacteria species. Here, we describe and map the distribution of MU genotypes in Buruli ulcer (BU) endemic communities of the Nyong valley in Cameroon. We also tested the hypothesis of whether the suspected animal reservoirs of BU that share the human microhabitat are shedding contaminated fecal matters and saliva into their surrounding environments.MethodsEnvironmental samples from suspected MU-risk factors and lesion swabs from human patients were sampled in BU-endemic communities and tested for the presence of MU by qPCR targeting three independent sequences (IS2404, IS2606, KR-B). Positive samples to MU were further genotyped by VNTR with confirmation by sequencing of four loci (MIRU1, Locus 6, ST1, Locus 19).ResultsMU was detected in environmental samples including water bodies (23%), biofilms (14%), detritus (10%), and in human patients (73%). MU genotypes D, W, and C were found both in environmental and human samples. The micro geo-distribution of MU genotypes from communities showed that genotype D is found both in environmental and human samples, while genotypes W and C are specific to environmental samples and human lesions, respectively. No obvious focal grouping of MU genotypes was observed at the community scale. An additional survey in the human microhabitat suggests that domestic and wild animals do not shed MU in their saliva and feces in sampled communities.ConclusionsVNTR typing uncovered different MU genotypes circulating in the endemic communities of the Akonolinga district. A MU environmental genotype was found in patients, yet the mechanism of contamination remains to be investigated; and recovering MU in culture from the environment remains key priority to enable a better understanding of the mode of transmission of BU. We also conclude that excretions from suspected animals are unlikely to be major sources of MU in the Nyong Valley in Cameroon.

Highlights

  • Genotyping is a powerful tool for investigating outbreaks of infectious diseases and it can provide useful information such as identifying the source and route of transmission, and circulating strains involved in the outbreak

  • variable number of tandem repeats (VNTR) typing uncovered different Mycobacterium ulcerans (MU) genotypes circulating in the endemic communities of the Akonolinga district

  • A MU environmental genotype was found in patients, yet the mechanism of contamination remains to be investigated; and recovering MU in culture from the environment remains key priority to enable a better understanding of the mode of transmission of Buruli ulcer (BU)

Read more

Summary

Introduction

Genotyping is a powerful tool for investigating outbreaks of infectious diseases and it can provide useful information such as identifying the source and route of transmission, and circulating strains involved in the outbreak. Environmental studies on the sources of MU have detected signature sequences in the host of samples including water bodies [11, 12], detritus and plant biofilms [12, 13], aquatic insects and animals [13, 14], mosquitoes [15, 16], domesticated animals [1, 17,18,19], peri-domestic small mammals [12, 20, 21], and wild animals [1, 22,23,24]; it remains challenging to recover MU in culture from the environment [25]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call