Abstract

Network embedding has recently attracted lots of attention due to its wide applications on graph tasks such as link prediction, network reconstruction, node stabilization, and community stabilization, which aims to learn the low-dimensional representations of nodes with essential features. Most existing network embedding methods mainly focus on static or continuous evolution patterns of microscopic node and link structures in networks, while neglecting the dynamics of macroscopic community structures. In this paper, we propose a Community-aware Dynamic Network Embedding method (short for CDNE) which considers the dynamics of macroscopic community structures. First, we model the problem of dynamic network embedding as a minimization of an overall loss function, which tries to maximally preserve the global node structures, local link structures, and continuous community dynamics. Then, we adopt a stacked deep autoencoder algorithm to solve this minimization problem, obtaining the low-dimensional representations of nodes. Extensive experiments on both synthetic networks and real networks demonstrate the superiority of CDNE over the existing methods on tackling various graph tasks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.