Abstract
Community detection plays an important role in creation and transfer of information. Active learning has been employed recently to improve the performance of community detection techniques. Active learning provides a semi-automatic approach in a selective sampling of data. Based on this, a community trolling approach for topic based community detection in big data is proposed. Community trolling selectively samples the data relevant to the current context from polluted big data using active learning. Fine-tuned data is then used to study community and its sub-communities. Community trolling as a precursor to community detection leads to a reduction of the huge unreliable dataset into a reliable dataset and results in the better prediction of community elements such as important topics and important entities. Finally, the effectiveness of approach was evaluated by implementing it on a real world Tumbler dataset. The results illustrate that community trolling provides a richer dataset resulting in more appropriate communities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.