Abstract

The objectives of this study were (i) to isolate and characterize of cultivable denitrifying bacteria using classic microbiological and molecular methods, (ii) to compare of 16S rRNA and nosZ genes as molecular markers, (iii) to determine bacterial community structure and diversity in soil samples using single-strand conformation polymorphism (SSCP) analysis. In this study, 49 bacterial isolates were cultivated and phylogenetic analyses grouped them into two phyla: Proteobacteria (37 species) and Firmicutes (12 species). Our study showed that the nosZ functional gen could be used to identify denitrifying bacteria abundance in environment but could not be used to identify pure bacterial cultures. In addition, the bacterial community structure showed significant differences among the various soil types. Phylogenetic analysis of community structure indicated that 51 clones could be divided into 2 phylotypes. Uncultured bacteria (80.4%) and Gammaproteobacteria (19.6%) were the dominant components of the soil bacterial community. For 16S rRNA, PCR products of 49 bacteria were obtained with 27F-1492R primer pairs. For nosZ, PCR products were obtained with primers 1F-1R (259 bp), 2F-2R (267 bp), and F-1622R (453 bp) of 39 bacteria that the single nosZ band provided on the agarose gel. The bacterial 16S rRNA gene clone library was dominated by Gammaproteobacteria and Bacilli. The nosZ clone sequences did not represent the bacteria from which they were obtained but were found to be closer to the environmental clones. Our study showed that the nosZ functional gene could be used to identify denitrification abundance in environment but could not be used to identify pure bacterial cultures. It was also found that the nosZ sequences showed uncultured denitrifier species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.