Abstract

Microorganisms play fundamental roles in the ecosystem of the Gulf of Mexico (GOM), yet their vertical distributions along the depth continuum of water column are not well known. In this study, we presented the 16S rDNA sequences and lipid profiles in the context of water chemistry to characterize the archaeal community structure above a gas hydrate mound (MC 118) in GOM. Our results showed that all archaeal sequences were related to unknown species of Crenarchaeota or Euryarchaeota. Phylogenetically, group II –β Euryarchaeota dominated the surface water and mid-depth (400-m) water (74% and 58% of total archaeal species, respectively) whereas the marine group I-γ Crenarchaeota dominated the bottom (869 m) water (61% of total archaeal species). Estimates of the Shannon index showed the highest diversity of planktonic Archaea at the 400 m depth. Glycerol dialkyl glycerol tetraether (GDGT) lipids were detected from the 400- and 869-m depths only and characterized by relatively high abundances of GDGT-5 (crenarchaeol) and GDGT-0. Our studies suggested a possible zonation of archaeal community in the water column, which did not seem to be affected by the possible venting of hydrocarbons from the hydrate location in GOM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.