Abstract

The methanogenic biodegradation of crude oil involves the conversion of hydrocarbons to methanogenic substrates by syntrophic bacteria and subsequent methane production by methanogens. Assessing the metabolic roles played by various microbial species in syntrophic communities remains a challenge, but such information has important implications for bioremediation and microbial enhanced energy recovery technologies. Many factors such as changing environmental conditions or substrate variations can influence the composition and biodegradation capabilities of syntrophic microbial communities in hydrocarbon-impacted environments. In this study, a methanogenic crude oil-degrading enrichment culture was successively transferred onto the single long chain fatty acids palmitate or stearate followed by their parent alkanes, hexadecane or octadecane, respectively, in order to assess the impact of different substrates on microbial community composition and retention of hydrocarbon biodegradation genes. 16S rRNA gene sequencing showed that a reduction in substrate diversity resulted in a corresponding loss of microbial diversity, but that hydrocarbon biodegradation genes (such as assA/masD encoding alkylsuccinate synthase) could be retained within a community even in the absence of hydrocarbon substrates. Despite substrate-related diversity changes, all communities were dominated by hydrogenotrophic and acetotrophic methanogens along with bacteria including Clostridium sp., members of the Deltaproteobacteria, and a number of other phyla. Microbial co-occurrence network analysis revealed a dense network of interactions amongst syntrophic bacteria and methanogens that were maintained despite changes in the substrates for methanogenesis. Our results reveal the effect of substrate diversity loss on microbial community diversity, indicate that many syntrophic interactions are stable over time despite changes in substrate pressure, and show that syntrophic interactions amongst bacteria themselves are as important as interactions between bacteria and methanogens in complex methanogenic communities.

Highlights

  • Since the dawn of the industrial age, widespread use and processing of petroleum products has led to an increase in the hydrocarbon contamination of a wide range of environments

  • The exposure of subsurface environments to heavy organic loads such as hydrocarbons leads to the rapid development of anoxic conditions in which the majority of hydrocarbon biodegradation is thought to proceed via methanogenesis (Jones et al, 2008)

  • Alkanes comprise an abundant fraction of many crude oils, their biodegradation under anaerobic conditions is of practical relevance to biotechnological applications in fossil energy reservoirs and fuel-contaminated sites

Read more

Summary

Introduction

Since the dawn of the industrial age, widespread use and processing of petroleum products has led to an increase in the hydrocarbon contamination of a wide range of environments. The exposure of subsurface environments to heavy organic loads such as hydrocarbons leads to the rapid development of anoxic conditions in which the majority of hydrocarbon biodegradation is thought to proceed via methanogenesis (Jones et al, 2008). This process is important in many fossil energy reservoirs, wherein hydrocarbon metabolism over geologic time has led to the accumulation of biogenic methane in gas caps overlying oil legs (Jones et al, 2008). Alkylsuccinate synthase (encoded by the assA/masD gene; assA will be the designate name used in this study) is the key enzyme responsible for addition of alkanes to fumarate (Callaghan et al, 2008; Grundmann et al, 2008), while benzylsuccinate synthase (bssA) adds fumarate to substituted aromatic hydrocarbons (Heider, 2007)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call