Abstract

A reservoir is an important source of methane (CH4), which is consumed by aerobic methane-oxidizing bacteria (MOB), representing the main CH4 sink in water. The central urban area of Chongqing in the Three Gorges Reservoir (TGR) area was selected as the study area in 2021. High-throughput sequencing was used to analyze the community structure and abundance of MOBs. The results showed that Methylocystis (Type II) was the dominant MOB in water, whereas Methylococcus (Type I) and Methylocystis co-dominated the sediments. High water temperature in the study area largely accounted for the predominance of Type II MOBs in the two habitats. Moreover, the influence of environmental factors on MOB community and its interspecific relationship were significantly regulated by the operation of the TGR. In the low-water-level period, NO2--N and CO2 concentration significantly correlated with Methylocystis, whereas in the high-water-level period, the higher discharge and velocity weakened the influence of all environmental factors on Methylocystis. In addition, the scouring of sediments by increasing discharge in the high-water-level period caused a significant decrease in dissolved CH4 concentration. The decrease in substrate increased interspecific competition within the MOB community, especially between different types of MOBs, in the high-water-level period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call