Abstract

AbstractThis review represents the Southern Ocean community’s satellite data needs for the coming decade. Developed through widespread engagement and incorporating perspectives from a range of stakeholders (both research and operational), it is designed as an important community-driven strategy paper that provides the rationale and information required for future planning and investment. The Southern Ocean is vast but globally connected, and the communities that require satellite-derived data in the region are diverse. This review includes many observable variables, including sea ice properties, sea surface temperature, sea surface height, atmospheric parameters, marine biology (both micro and macro) and related activities, terrestrial cryospheric connections, sea surface salinity, and a discussion of coincident andin situdata collection. Recommendations include commitment to data continuity, increases in particular capabilities (sensor types, spatial, temporal), improvements in dissemination of data/products/uncertainties, and innovation in calibration/validation capabilities. Full recommendations are detailed by variable as well as summarized. This review provides a starting point for scientists to understand more about Southern Ocean processes and their global roles, for funders to understand the desires of the community, for commercial operators to safely conduct their activities in the Southern Ocean, and for space agencies to gain greater impact from Southern Ocean-related acquisitions and missions.

Highlights

  • Introduction and motivationThis review represents the Southern Ocean community’s satellite needs for the coming decade

  • While this review largely focuses on the Southern Ocean itself, many terrestrial elements of the cryosphere interact with the ocean in important ways

  • As this report aims to synthesize all relevant feedback from the Southern Ocean community, it deserves mention that, according to one respondent, magnetic field data in the Southern Ocean is needed for global induction and heat flow models

Read more

Summary

Introduction

Introduction and motivationThis review represents the Southern Ocean community’s satellite needs for the coming decade. The Southern Ocean (defined as south of 30°S, the expertise of those who replied and commented is largely restricted to higher latitude oceans, which limits some of the topics discussed in this paper) has a profound influence on the global ocean circulation and the Earth’s climate. It uniquely connects the Earth’s ocean basins and plays a key role in global overturning circulation, thereby regulating the capacity of the ocean to store and transport heat, carbon and other properties that influence climate and global biogeochemical cycles. Changes in the extent or volume of sea ice result in changes in the Earth’s albedo, water mass formation rates and air–sea gas exchange rates, and effects on marine organisms from microbes to whales (see Rintoul et al 2012 for more detailed information on the importance of the Southern Ocean in the global climate and biogeochemical system)

Objectives
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call