Abstract

Malaria is globally endemic in tropical and subtropical regions and so is the hemoglobinopathies, thalassemias and glucose-6-phosphate dehydrogenase (G6PD) deficiency. This biological dogma of hyper-endemic all over the tribal land in India leads to high morbidity and mortality. The directed genetic abnormalities of human erythrocytes have found to decrease the susceptibility towards malaria parasites and the heterozygotes of abnormalities probably confer protection against the Plasmodium falciparum infection. A fascinating trend for an inverse relationship between sickle cell disorders and G6PD deficiency in scheduled caste and tribal communities of Central-Eastern India has been observed. When the frequency of sickle cell allele decreases in malaria endemic cross-section of the tribal population, the frequency of G6PD deficiency allele increases and vice versa. This medical aspect is important from an evolutionary biological background and could be an excellent point for molecular analyses to determine the signature of selection in the genomic regions of β- globin and G6PD genes. Since the selection favors the mutation with least cost to the population [as the clinical manifestations of G6PD deficiency are mild and do not result in a complete loss of enzyme activity against the sickle cell disease with high morbidity and mortality in the region] and the predominant frequency of G6PD deficiency over the sickle cell disorders in some tribal communities, it seems that the replacement of sickle cell allele for G6PD deficiency is occurring in the scheduled castes/tribes of Chhattisgarh, Madhya Pradesh, Maharashtra and Odisha states in Central India. These findings are consistent with our previous studies carried out in Central-Eastern India.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call