Abstract

The traditional neutral voltage problem in low-voltage (LV) four-wire multigrounded distribution networks can be aggravated due to an unbalanced allocation of one-phase photovoltaic (PV) units. Inherent limitations restrict the performance of the traditional strategies to mitigate the combined effect of load and PV unbalance. To overcome the shortcoming of traditional approaches, a new dynamic mitigation approach using community energy storage (CES) is proposed in this paper. A power balancing algorithm is developed to perform the balancing operation while minimizing power drawn from the CES. A charge/discharge control strategy is developed that will continuously balance and dynamically adjust the power exchange with the grid in a real time, and mitigate the neutral current and neutral voltage rise. To investigate the applicability of the proposed approach under physical time delays associated with battery and PV systems, a suitable dynamic model is developed. An Australian LV distribution system is used to verify the proposed approach under daylong variations of load and PV, and also during short-term variations of PV output caused by cloud passing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.