Abstract

Protists (microbial eukaryotes) are a critically important but understudied group of microorganisms. They are ubiquitous, represent most of the genetic and functional diversity among eukaryotes, and play essential roles in nutrient and energy cycling. Yet, protists remain a black box in marine sedimentary ecosystems like the intertidal mudflats in the Bay of Fundy. The harsh conditions of the intertidal zone and high energy nature of tides in the Bay of Fundy provide an ideal system for gaining insights into the major food web players, diversity patterns and potential structuring influences of protist communities. Our 18S rDNA metabarcoding study quantified seasonal variations and vertical stratification of protist communities in Bay of Fundy mudflat sediments. Three ‘SAR’ lineages were consistently dominant (in terms of abundance, richness, and prevalence), drove overall community dynamics and formed the core microbiome in sediments. They are Cercozoa (specifically thecate, benthic gliding forms), Bacillariophyta (mainly cosmopolitan, typically planktonic diatoms), and Dinophyceae (dominated by a toxigenic, bloom-forming species). Consumers were the dominant trophic functional group and were comprised mostly of eukaryvorous and bacterivorous Cercozoa, and omnivorous Ciliophora, while phototrophs were dominated by Bacillariophyta. The codominance of Apicomplexa (invertebrate parasites) and Syndiniales (protist parasites) in parasite assemblages, coupled with broader diversity patterns, highlighted the combined marine and terrestrial influences on microbial communities inhabiting intertidal sediments. Our findings, the most comprehensive in a hypertidal benthic system, suggest that synergistic interactions of both local and regional processes (notably benthic-pelagic coupling) may drive heterogenous microbial distribution in high-energy coastal systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.