Abstract

ABSTRACTEffective and stable nitrogen removal from wastewater requires abundant and active denitrifying populations. In this study, a one-year investigation of the population dynamics of phylogenetic groups known to harbor nitrate reducers was conducted in three municipal wastewater treatment plants (WWTPs). The bacterial community composition was determined by amplicon sequencing of the 16S rRNA gene, and putative nitrate reducers were identified by sequencing narG and napA genes. Fluorescence in situ hybridization with oligonucleotide probes targeting known nitrate reducers in wastewater revealed that certain bacteria predominated in the WWTPs: Curvibacter-related bacteria, Comamonadaceae, Azoarcus, Thauera, Dechloromonas, and Candidatus Accumulibacter within Rhodocyclaceae. The data showed high diversity in the nitrate-reducing community and a large degree of redundancy, with a relatively stable core group of bacteria in each plant that ensured small yearly variation in nitrate reduction rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.