Abstract
A recently introduced novel community detection strategy is based on a label propagation algorithm (LPA) which uses the diffusion of information in the network to identify communities. Studies of LPAs showed that the strategy is effective in finding a good community structure. Label propagation step can be performed in parallel on all nodes (synchronous model) or sequentially (asynchronous model); both models present some drawback, e.g., algorithm termination is nor granted in the first case, performances can be worst in the second case. In this paper, we present a semi-synchronous version of LPA which aims to combine the advantages of both synchronous and asynchronous models. We prove that our models always converge to a stable labeling. Moreover, we experimentally investigate the effectiveness of the proposed strategy comparing its performance with the asynchronous model both in terms of quality, efficiency and stability. Tests show that the proposed protocol does not harm the quality of the partitioning. Moreover it is quite efficient; each propagation step is extremely parallelizable and it is more stable than the asynchronous model, thanks to the fact that only a small amount of randomization is used by our proposal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.