Abstract
We present a simple and flexible method to prove consistency of semidefinite optimization problems on random graphs. The method is based on Grothendieck’s inequality. Unlike the previous uses of this inequality that lead to constant relative accuracy, we achieve any given relative accuracy by leveraging randomness. We illustrate the method with the problem of community detection in sparse networks, those with bounded average degrees. We demonstrate that even in this regime, various simple and natural semidefinite programs can be used to recover the community structure up to an arbitrarily small fraction of misclassified vertices. The method is general; it can be applied to a variety of stochastic models of networks and semidefinite programs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.