Abstract
Smart marketing models could utilize communities within the social Web to target advertisements. However, providing accurate community partitions in a reasonable time is challenging for current online large-scale social networks. In this paper, we propose an approach to enhance community detection in online social networks using node similarity techniques. We apply these techniques on unweighted social networks to detect community structure. Our proposed approach creates a virtual network based on the original social network. Virtual edges are added during this pre-processing step based on nodes' similarity in the original social network. Hence, a virtual link is established between any two similar nodes. Then the landmark CNM algorithm is applied on the generated virtual network to detect communities. This approach, labelled Similarity-CNM is expected to further maximize the quality of the inferred communities in terms of modularity and detection speed. Our experimental evaluation study asserts these gains, which accuracy is supported by a study based on Normalized Mutual Information Measure to determine how similar are the actual communities in the original network and the ones found by the proposed approach in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.