Abstract

It has become a tendency to use a combination of autoencoders and graph neural networks for attribute graph clustering to solve the community detection problem. However, the existing methods do not consider the influence differences between node neighborhood information and high-order neighborhood information, and the fusion of structural and attribute features is insufficient. In order to make better use of structural information and attribute information, we propose a model named community detection fusing graph attention network (CDFG). Specifically, we firstly use an autoencoder to learn attribute features. Then the graph attention network not only calculates the influence weight of the neighborhood node on the target node but also adds the high-order neighborhood information to learn the structural features. After that, the two features are initially fused by the balance parameter. The feature fusion module extracts the hidden layer representation of the graph attention layer to calculate the self-correlation matrix, which is multiplied by the node representation obtained by the preliminary fusion to achieve secondary fusion. Finally, the self-supervision mechanism makes it face the community detection task. Experiments are conducted on six real datasets. Using four evaluation metrics, the CDFG model performs better on most datasets, especially for the networks with longer average paths and diameters and smaller clustering coefficients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.