Abstract

In order to analyze complex networks to find significant communities, several methods have been proposed in the literature. Modularity optimization is an interesting and valuable approach for detection of network communities in complex networks. Due to characteristics of the problem dealt with in this study, the exact solution methods consume much more time. Therefore, we propose six metaheuristic optimization algorithms, which each contain a modularity optimization approach. These algorithms are the original Bat Algorithm (BA), Gravitational Search Algorithm (GSA), modified Big Bang–Big Crunch algorithm (BB-BC), improved Bat Algorithm based on the Differential Evolutionary algorithm (BADE), effective Hyperheuristic Differential Search Algorithm (HDSA) and Scatter Search algorithm based on the Genetic Algorithm (SSGA). Four of these algorithms (HDSA, BADE, SSGA, BB-BC) contain new methods, whereas the remaining two algorithms (BA and GSA) use original methods. To clearly demonstrate the performance of the proposed algorithms when solving the problems, experimental studies were conducted using nine real-world complex networks − five of which are social networks and the rest of which are biological networks. The algorithms were compared in terms of statistical significance. According to the obtained test results, the HDSA proposed in this study is more efficient and competitive than the other algorithms that were tested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.