Abstract

Recently, in many systems such as speech recognition and visual processing, deep learning has been widely implemented. In this research, we are exploring the possibility of using deep learning in community detection among the graph datasets. Graphs have gained growing traction in different fields, including social networks, information graphs, the recommender system, and also life sciences. In this paper, we propose a method of community detection clustering the nodes of various graph datasets. We cluster different category datasets that belong to affiliation networks, animal networks, human contact networks, human social networks, miscellaneous networks. The deep learning role in modeling the interaction between nodes in a network allows a revolution in the field of science relevant to graph network analysis. In this paper, we extend the gumbel softmax approach to graph network clustering. The experimental findings on specific graph datasets reveal that the new approach outperforms traditional clustering significantly, which strongly shows the efficacy of deep learning in graph community detection clustering. We do a series of experiments on our graph clustering algorithm, using various graph datasets: Zachary's karate club, Highland tribes, Train bombing, American Revolution, Dolphins, Zebra, Windsurfers, Les Miserables, Political books.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.